【建模干货】快速灵活搭建"超级大"的结构模型

单胞(Unit cell):又称晶胞,能够反映晶格的对称性的周期单元。 超胞(Supercell):超胞是对单胞的扩展,扩展成新的重复单元。

图 1 单胞石墨烯和 4x4x4 超胞石墨烯结构

为什么要创建超胞结构?

——我们研究表面吸附、异质结和缺陷等问题时常常需要构造一定形态的超胞结构。

- 1) 表面吸附:不同晶向、不同吸附浓度;
- 2) 异质结模型: 解决晶格失配的问题;
- 3) 缺陷问题:获得合适的空位、掺杂浓度模型;

•••••

设计高性能新材料的过程:我们通常会对多个材料进行相同的处理及性能表征,通过一系列指标进行材料 筛选。那如何实现地对成百上干的结构做类似的超胞建模处理呢?今天我为大家介绍建模神器— MatCloud+,帮您解决超胞建模的一切问题。

接下来,我们以文献 J. Phys. Chem. C, 2011, 115, 19394–19404.搭建锐钛矿型 TiO₂ 超胞结构为例,说 明 MatCloud+如何进行扩展原始晶胞: 2 x 2 x 2 超胞和重新定义晶胞: √2 x √2 x 1 超胞模型的搭建。

请大家注意喔:你不需要下载任何软件,仅需浏览器,且全部是图形化操作,大家跟着我来吧。

- 一、超晶胞(扩展原始超胞)
- 本部分以锐钛矿型 TiO₂ 结构为例,直接扩展 2 x 2 x 2 超胞。

(1) 上传结构

MatCloud+平台会自动转变上传格式,因此支持 cif、POSCAR、mol、pdb 等多种格式文件。

Mat Cloud+	命模拟	💩 结构集	目 数据库	1 @ 人工智能	🖺 产品帮助	⊕ 更多		中 EN 瀬 zhangxiao 🕚
私有结构库	****	私友结构房						
机器学习数据库		141919/14						
物性数据库	▲上传	2					Q 请输入关键词, 把	搜索结构 搜索
		总数:22	结构名 🗅	化学式 😄	原子总数	空间群	创建时间 💠	操作
		1	graphite (0 0 1)-Li-1-3	Lil C32	33	1 P1	2021-09-14 15:16:44	國直看 《编辑 ④下载 自删除
		2	graphite (0 0 1)-Li-1-2	Li1 C32	33	1 P1	2021-09-14 15:16:44	國查看 之编辑 ④下载 自删除
		3	graphite (0 0 1)-Li-1-1	Li1 C32	33	1 P1	2021-09-14 15:16:44	國直看 之编辑 ④下载 首删除
		4	graphite (0 0 1)-Li-1-0	Li1 C32	33	1 P1	2021-09-14 15:16:43	民 查看 《编辑 ④下载 前删除
		5	graphite (0 0 1)	C32	32	1 P1	2021-09-14 15:12:44	昆查看 《编辑 ④下载 自删除
		6	Cu	Cu32	32	1 P1	2021-09-08 16:39:46	昆查看 龙编组 ④下载 自删除
		7	TiO2-1Mn	O16Ti7Mn1	24	1 P1	2021-09-08 09:39:52	民 查看 《编辑 ④下载 前 删除
	0	8	TiO2-Mo	O72Ti32Mo4	108	1 P1	2021-09-08 09:39:52	民 查看 《编辑 ④下载 自删除

图 2 MatCloud+上传结构

(2) 创建直接超晶胞 (扩展原始晶胞) 工作流

MatCloud+的建模功能可以轻松的实现扩胞、切面、随机取代、建立吸附构型等操作。本例中,所需组件如下:

点击输入控制,将【通用导入组件】拖至右边的工作流设计页面;

点击建模,将组件【超晶胞(扩展原始晶胞)】拖至右边的工作流设计页面并连接成计算流程,如下图所示:

< 🔶 🏥	atCloud+ CG 楔	以 🔒 结构集	目 数据库		凹 产品帮助	◎ 更多		🕈 EN 💈	🎒 jishubi	ı@ (Ŀ
**	系统组件 我的组件	超晶胞(扩展原始晶胞)					超算64G(sc) ~	□□ 提交	€	Q 🛛	7
输入控制	分子结构枚举										
ようしゃ American Ameri	切表面					◎ 通用导入组件 ····					ł
G.	吸附建模 (分子)										
模拟	吸附建模 (原子)					■ 起品胞(1 ⁺ 尾原始品胞) …					
★模板	界面建模										
	超晶胞 (扩展原始晶胞)										
	超晶胞 (重新定义晶格)										
	廢机取代										
			图 3	MatClou	d+超晶胞	(扩展原始晶胞) 建模工作流					

- (3) 设置超晶胞 (扩展原始晶胞) 建模参数并提交计算
- ▷ {扩展倍数}: OA OB OC 的默认值均为 1, 点击 OA OB OC 下方的 icon (空白条) 按钮调整数值为 2 2 2, 设置完毕点击保存按钮。

< ()	atCloud+ CA KU	以 & 结构集	目 数据库	@ 人工智能	🖺 产品帮助	⊖ ± \$			N 👰 jishubu@ 🖒
*	系统组件 我的组件	超晶胞(扩展原始晶胞)						超晶胞(扩展原始晶)	(B)
输入控制	分子结构枚举						参数设置		
8 80 301横	切表面					通用导入组件 …	扩展倍数 OA		
G.	吸附建模 (分子)						2		
模拟	吸附建模 (原子)					(1° (19 (19 (19 (19 (19 (19 (19 (19 (19 (19	OB		
₩	界面建模						oc		
	4755.05 (**#675066538)						2		
	超晶的(面新定义晶格)								
	REFUTZIC								
								☆ (1)	١

- (4) 查看、下载计算结果
- OraceOraceSenderstanders

> 单胞与超晶胞 (直接扩展晶胞) 结果:

图 6 单包 TiO2 和 2 x 2 x 2 TiO2 超胞结构

- 二、超晶胞(重新定义晶格)
- 本部分以锐钛矿型 TiO₂ 结构为例,重新定义晶胞: √2 x √2 x 1 超胞

操作步骤同超晶胞(扩展原始晶胞) 一致,只不过参数设置不同:

< 🖗 🛤	at Goud+ Ga 模拟	以 💩 结构集	封 数据库	❷ 人工智能	🖺 产品帮助	☺ 更多			中 EN	🦉 jishubu@	Φ
.	系统组件 我的组件	超晶胞(重新定义晶格)					6		超晶胞(重新定义晶格)		
输入控制	分子结构枚举						参数设	1921 1921			
杀 建模	切表面				通用导入	、细件 …	新的調	播矢量			
(C)	吸附建模 (分子)					<u> </u>	on	1	v	0	
模拟	吸附建模 (原子)				超品胞	(重新定义晶格) ***	oc	0	0	1	
◆ <i>模板</i>	界面建模								HB		
	和品胞(扩展明治品胞)										
	超晶態 (重新定义晶格)										
	施机取代										

图 7 MatCloud+超晶胞(扩展原始晶胞)参数设置

什么是重新定义晶格 (Redfine lattice) ? ——改变周期性晶格的形状

如何进行重新定义晶格?

金属 Mg 的晶体结构大家比较熟悉吧,是一个六方晶胞,怎么变成正交相呢?如下图所示,将 Mg 的晶体结构进行旋转,使得*OA*方向变成*OA*方向,*OB*方向变成*OB*方向,即可得到正交相的 Mg 晶胞(蓝色长方形标记)。因此,我们只需要进行向量相加减即可实现。

 $\overrightarrow{OB'} = \overrightarrow{OB}$

 $\overrightarrow{OA'} = \overrightarrow{OB} + 2\overrightarrow{OA} = (0\ 1\ 0) + 2\ (1\ 0\ 0) = (2\ 1\ 0)$

所以Y轴不变,新的晶格矢量(210)为新的正交晶胞的X轴矢量。

图 8 Mg 的六方晶胞转换成正交相的示意图

对于√2 × √2 × 1 的 TiO₂ 超胞结构,是在 OA,OB 方向进行根号超胞建模,根据刚刚 Mg 的计算过程,我 们可知此时晶格矢量变化为:

 $\overrightarrow{OA'} = \overrightarrow{OA} + \overrightarrow{OB} = (1\ 0\ 0) + (0\ 1\ 0) = (1\ 1\ 0)$

 $\overrightarrow{OB'} = -\overrightarrow{OA + \overrightarrow{OB}} = - (0 \ 1 \ 0) + (1 \ 0 \ 0) = (1 \ -1 \ 0)$

图 9 锐钛矿型 TiO2 带根号建模示意图

▶ 平台操作:与超晶胞(扩展原始晶胞)的操作步骤一致,上传锐钛矿型 TiO₂结构后搭建超晶胞(重新 定义晶格) 计算工作流,设置晶格矢量变化参数,点击计算,直接得到可视化的建模结果。

< ()	ntCloud+	Ga 機能	3. & 结构集	目 数据库	@ 人工智能	🖺 产品帮助	⊖ 更多			中 E	V 🥻 jishubu@	Q
*	系统组件	我的组件	超晶胞(重新定义晶格)					E		超晶胞(重新定义晶	a)	
输入控制	通用导入组件							80	(QM			
80	并行控制器					通用导	→ 2000	 8fiel	晶格矢量			
建模								OA	1	1	0	
())) ()))	502.00988					超晶胞	(重新定义晶格)	 ов	1	-1	0	
								ос	0	0	1	
積板										1+30		
											Cell Formula: Ti8	O16
											Space Group: 1 P1	l -
										**	Lattice Parameters	
											b = 5.3401 Å	
									2		$c=9.4860~{\rm \AA}$	
										• •	a = 90.0000°	
										1C ma	$\beta = 90.0000^{\circ}$ $\gamma = 90.0000^{\circ}$	
											1	
											0	

图 10 锐钛矿型 TiO2 带根号建模参数设置

超晶胞(扩展原始晶胞)结果无误的话,点击保存按钮,提交任务,可视化的展示超胞结构,并支 持下载图片或者结构文件。

图 11 MatCloud+超晶胞 (重新定义晶格) 建模结果

▶ 单胞与超晶胞 (重新定义晶格) 结果:

图 12 单包 TiO2和√2 x √2 x 1 TiO2超胞结构

便捷的超胞建模, 您学会了吗? MatCloud+的此功能组件为大家免费开放, 如此实用的功能, 欢迎大家 试用!

更多 Matcloud+教程可关注 b 站迈高科技。 更多动态请关注迈高科技微信公众号

